Cooperativity in ATP Hydrolysis by MopR Is Modulated by Its Signal Reception Domain and by Its Protein and Phenol Concentrations

Jayanti Singh, Ruchi Anand, Amnon Horovitz

Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel

ABSTRACT The NtrC family of AAA+ proteins are bacterial transcriptional regulators that control σ54-dependent RNA polymerase transcription under certain stressful conditions. MopR, which is a member of this family, is responsive to phenol and stimulates its degradation. Biochemical studies to understand the role of ATP and phenol in oligomerization and allosteric regulation, which are described here, show that MopR undergoes concentration-dependent oligomerization in which dimers assemble into functional hexamers. The oligomerization occurs in a nucleation-dependent manner with a tetrameric intermediate. Additionally, phenol binding is shown to be responsible for shifting MopR’s equilibrium from a repressed state (high affinity toward ATP) to a functionally active, derepressed state with low-affinity for ATP. Based on these findings, we propose a model for allosteric regulation of MopR.

IMPORTANCE The NtrC family of bacterial transcriptional regulators are enzymes with a modular architecture that harbor a signal sensing domain followed by an AAA+ domain. MopR, a NtrC family member, responds to phenol and activates phenol adaptation pathways that are transcribed by σ54-dependent RNA polymerases. Our results show that for efficient ATP hydrolysis, MopR assembles as functional hexamers and that this activity of MopR is regulated by its effector (phenol), ATP, and protein concentration. Our findings, and the kinetic methods we employ, should be useful in dissecting the allosteric mechanisms of other AAA+ proteins, in general, and NtrC family members in particular.

KEYWORDS AAA+, allostery, oligomerization, phosphate-binding protein, phenol

The AAA+ (ATPases Associated with various cellular Activities) superfamily of proteins are ubiquitous and involved in numerous and diverse biological processes such as cell cycling, protein folding and degradation, disassembly of macromolecular complexes, and membrane fusion (1, 2). AAA+ are ATP-fuelled molecular machines that are often found to exist as ring complexes (3, 4). ATP binding and hydrolysis take place in their conserved nucleotide binding domain (NBD) (2) and lead to conformational changes that can generate mechanical force essential for their function (5, 6). Most AAA+ proteins form assemblies of two or more subunits to perform their function (7). The heterogeneity in the function of this family of proteins is mostly due to their specific accessory domains and oligomeric structures (8). Such differences impact the AAA+’s kinetics of nucleotide binding and hydrolysis, stability, and the mechanisms by which conformational changes are coupled to their function (8, 9). Despite much previous research on members of AAA+, the relationships between their structures and functions are still not well understood. Some attempts to understand allosteric regulation in these multi-subunit proteins have been done using the well-established Monod–Wyman–Changeux (MWC) and the Koshland–Némethy–Filmer (KNF) models of protein cooperativity (10, 11).
Members of the NtrC family of AAA+ proteins aid in converting the inactive closed
σ54-dependent RNA polymerase (RNAP) promoter complex to an open active state;
thereby effecting transcription of genes involved in selected downstream pathways
(12). These proteins belong to the broader family of bacterial enhancer binding pro-
teins that are known to assist in onset of bacterial virulence and also promote survival
under stressful conditions by triggering specific pathways that help cope with the
external stimuli (12). NtrC family regulators are characterized by modular domain orga-
nization with a unique variable signal reception domain (A) connected via a short so-
called B-linker to a highly conserved ATPase domain (C) and a C-terminally located
DNA binding domain (D) (Fig. 1a) (13, 14). The C-terminal DNA binding domain forms a
helix-turn helix motif and binds to an activation site which is generally ~200 bp
upstream of the transcription regulation site where the NtrC-σ54-RNAP complex
assembles (12). The central conserved ATPase domain is composed of the seven con-
served segments, common to AAA+ superfamily members, with two additional
β-hairpin insertions that form the two loops close to the central pore (12, 14). The loops are believed
to be important for effecting the mechano-function of the enzyme via interaction with the
σ54-RNAP complex (15, 16). The N-terminal signal reception domain is the one that senses
the external stimuli and makes the protein responsive to environmental cues (12). The sig-
nal can be transferred to the enzyme via either phosphorylation, binding of a speci-
fic ligand, or protein-protein interactions (12). The founding members of the NtrC family,
NtrC, NtrC1, and NtrC4, have relatively smaller signal reception domains, and the primary
mode of signal transduction in these proteins is by phosphorylation of a specific aspartate
residue (17–19). In contrast, the MopR family subgroup members have relatively medium-
sized signal sensing domains that span around 200 residues (20). These members sense
different xenobiotics as exemplified by the response of XylR to benzene, DmpR to 2,
3-dimethylphenol, and MopR and PoxR to phenol (20, 21).

Based on the previous structural studies of the NtrC members, it has been proposed
that these proteins exist as dimers, which undergo effector-promoted assembly into
higher-order oligomers in which the interfaces serve as the ATP binding and hydrolysis
sites (22). The active oligomeric state is not well documented for these NtrC super-
family systems. For the proteins belonging to the MopR subclass, such as MopR and its
close homolog PoxR, the crystal structures of their signal reception domains were
solved as dimers (20, 21). The crystal structure of DmpR, which belongs to the same
subclass, shows that although the signal reception domain has a similar dimeric assem-
bly like that of MopR and PoxR, the overall structure in the presence of the AAA+
ATPase domain is a tetramer (23). The truncated construct of NtrC1 that contains only
the AAA+ ATPase domain and lacks the signal reception domain has been solved as a
heptameric assembly (17). In the case of the full-length inactivated form like that
solved for NtrX, however, a dimer was the predominant form captured (24). Although structural snapshots of a subset of the members are available, an understanding of the origins of the heterogeneity in the oligomerization states of these proteins and the factors regulating their assembly and activation is still lacking. Moreover, the modes of inter- and intra-domain allostery in this family of regulators are also still not well-understood, in part, because of the plethora of possible effects due to effector and nucleotide binding. Thus, a question that arises from the review of the current literature on these systems is whether the functional forms of MopR subgroup members, like other AAA\(^+\) members, are higher-order structures such as hexamers or heptamers or are the dimeric or tetrameric units capable to elicit function.

Here, in an effort to unveil the allosteric regulation in MopR, and to establish its functional oligomeric state, we carried out a kinetic analysis in which the concentrations of protein, ATP, and phenol were varied. The results provide insights into the mode by which MopR achieves its functional state. Furthermore, this study also highlights the evolutionary relationship of the MopR system with other members of AAA\(^+\) superfamily and suggests that some crucial underlying structural similarities can have a widespread impact on the mechanistic properties of these proteins. Our results indicate that characteristic secondary structure insertions might be responsible for the distinctive oligomerization profile and subsequent functional activation of this system.

RESULTS

Constructs of MopR were generated that comprise the central NBD-containing transcription activation domain, MopRC (Fig. 1c) and the transcription activation domain fused via the B-linker to the C-terminus of the N-terminally located signal reception domain, MopRA\(^+\)C (Fig. 1b).

Initial rates of ATP hydrolysis by MopRA\(^+\)C and MopRC were measured as a function of their monomer concentration at a saturating concentration of ATP (7 mM), in the absence of phenol. The data were found to be nonlinear (Fig. 2) for both MopRA\(^+\)C and MopRC, thereby indicating that these proteins are in equilibrium between various oligomeric states that differ in their ATPase activities. The data were, therefore, fitted to Equation 5 derived by assuming that there exists an equilibrium between an inactive monomeric (or dimeric) species and the active hexameric species. The data fitted best to a dimer-hexamer equilibrium in the case of MopRA\(^+\)C and a monomer-hexamer equilibrium in the case of MopRC. The data fitting also provided estimates of the values of the catalytic rate constant (k\(_{cat}\)) of the hexamer and equilibrium constant (K\(_{eq}\)) of hexamerization. The k\(_{cat}\) and K\(_{eq}\) values for MopRA\(^+\)C were found to be 0.09 ± 0.01 s\(^{-1}\).
and $15 \pm 4 \; \mu M^{-1}$, respectively. In the case of MopRC, respective values of $0.55 \pm 0.05 \; s^{-1}$ and $0.09 \pm 0.07 \; \mu M^{-1}$ were obtained. The linearity in the curves (Fig. 2) beyond a certain protein concentration, which is observed for both constructs, indicates that at these concentrations only an active hexameric species is present. Additionally, it was observed that complete hexamerization of MopRA$_{1C}$ is favored at a much lower monomeric protein concentration than MopRC, thereby indicating the importance of the signal reception domain in hexamer assembly. The free energy change calculated from K_{eq} for the hexamer transition of MopRA$_{1C}$ at 25°C is $2.6 \pm 0.3 \; kJ mol^{-1}$ and, thus, marginally more favorable than that of MopRC, which is $5.9 \pm 0.7 \; kJ mol^{-1}$. The Walker A mutant (K279A), which is unable to effectively bind ATP (12), and the Walker B mutant (E345A), which is known to not hydrolyze ATP (12), were also generated to eliminate the possibility that the measured ATP hydrolysis is due to background ATPase contamination. The purified mutants were more than 95% pure (Fig. S1) and, as expected, show no ATPase activity, thereby confirming that the observed ATPase activity in Fig. 2 is solely due to the MopR protein.

Given the protein concentration dependence of MopR’s ATPase activity (Fig. 2), we measured the rate of ATP hydrolysis for both both MopRA$_{1C}$ and MopRC, as a function of ATP concentration, at protein concentrations where only the active hexameric
species is present (0.6 to 1.2 μM for MopRA1C and 2.6–3.1 μM for MopRC) (Fig. 3a and b). The curves were found to be sigmoidal, thereby indicating cooperativity in ATP binding and hydrolysis, with respect to ATP, and the data were fitted to the Hill equation (Equation 6). The values of the Hill coefficients for MopRA1C and MopRC were found to be ≈ 1.8 and ≈ 4.0, respectively, indicating the existence of positive cooperativity (Fig. 3c and d). The values of the Hill coefficients for both MopRA1C and MopRC are independent of protein concentration, thereby indicating no role of protein concentration (at this concentration range) in the conformational allostery (Fig. 3c and d). The average k_{cat} values for all the protein concentrations measured here are 0.09 ± 0.006 s$^{-1}$ for MopRA1C and 0.56 ± 0.02 s$^{-1}$ for MopRC, further confirming that there exist only a hexamer species at the various protein concentrations employed here. Reassuringly, these values of k_{cat} are in excellent agreement with those determined by an independent approach (Fig. 2). According to the concerted Monod-Wyman-Changeux model of allostery (10), such cooperativity (Fig. 3a to d) can arise when the protein is in equilibrium between two conformational states with low (T state) and high (R state) affinities for the substrate (ATP).

The progress curves of the ATPase activities of MopRA1C and MopRC, in the presence of a saturating concentration of ATP (7 mM), were found to display an initial lag phase that is protein concentration dependent. Such a lag phase can indicate nucleation-dependent
oligomerization. Hence, a double-logarithmic plot was generated for the dependence of the lag phase length on the protein concentration (Fig. 4a and b).

A linear dependence was found with a slope that can be used to determine the critical number of protomers (M) in the initial nucleus formed before assembly of the final oligomeric species. The size of the nucleus was found to be 4 for MopRA^1C and 5 for MopRC. The presence of a tetrameric intermediate in the case of MopRA^1C is consistent with the recently obtained crystal structure of phenol-bound DmpR (23). Since the structure was solved in the absence of ATP, but in the presence of phenol, we believe that the crystal structure of DmpR can represent this intermediate tetrameric state which is achieved before the complete active hexameric assembly is formed. The existence of concentration-dependent oligomerization from a dimer to hexamer via a tetrameric intermediate was further confirmed with SEC-MALS of MopRA^1C and its Walker B mutant (E345A) (Fig. 4c, S2, S3). The data clearly reveal the impact of concentration on oligomerization of MopRA^1C. The fits for both tetrameric and hexameric oligomeric states from SEC-MALS were found to be better for the E345A mutant than for wild-type MopR. Since the Walker B mutant can only bind ATP but not hydrolyze it, we propose that ATP plays an ancillary role in stabilizing the higher-order assembly. In the case of the MopRC construct, which lacks the signal reception domain, the kinetic study indicates existence of a pentameric intermediate before the formation of a hexamer, suggesting that the orientation of the sensor domain may play a role in oligomerization. These comparisons between MopRA^1C and MopRC confirm the higher tendency to assemble in the case of MopRA^1C and the biological and evolutionary significance and the fine control exerted by the signal reception domain in this multidomain protein.

All of the above-mentioned studies were carried out in the absence of phenol. However, given that phenol serves as an inducer for MopR protein activity, we also examined the effects of phenol on the activity of MopRA^1C. To explore the role of phenol in the allosteric regulation of MopR, 0.8 μM MopRA^1C was incubated with different concentrations of phenol (0.0–3.5 μM) and ATPase activity measurements were carried out (Fig. 5a). It can be seen that V_max increases as a function of phenol concentration, which could be correlated with the increased transcriptional activation as a function of phenol concentration at the cellular level. The values of the Hill coefficient are always found here to be greater than 1, suggesting the retention of positive cooperativity even in the presence of phenol. However, to our surprise, the plot of the Hill coefficient values as a function of phenol concentration is bell-shaped with an initial rise followed by a drop in the extent of cooperativity (Fig. 5b). This profile shows that the equilibrium between the T and the R states, with respect to ATP, is affected by phenol binding most
likely because of the differential affinity of phenol for the two conformational states. The data suggest that cooperativity owing to the ATP-promoted T to R transition initially increases because phenol stabilizes the T state. However, beyond 2 μM phenol, cooperativity decreases because the T to R transition becomes blocked and the observed ATPase activity becomes progressively due to the T state. Furthermore, these data also indicate that the R state, though being the higher affinity state with respect to ATP, is the repressed state of the protein. The inducer, phenol, therefore, converts the protein from the repressed to the derepressed T state. The T state, which has a low affinity towards ATP, might be favoring the subsequent hydrolysis and release of ATP for the initiation of σ54-dependent transcription activation. As a control, the effect of phenol on the ATPase activity of MopR² construct was also tested by incubating 2.6 μM MopR² with different concentrations of phenol. From the values of Vmax and n for MopR² (Fig. S4) it can be asserted that in the absence of the sensor domain the ATPase activity is completely phenol independent.

DISCUSSION

NtrC proteins are enzymes with a modular architecture (13, 14). The ATPase activity of the central AAA¹ domain is regulated by an upstream regulatory domain and the downstream mechanoenzyme function is likely facilitated via oligomerization of the central ATP hydrolyzing unit as well as via the interactions with its interacting counterparts (protein/DNA) (12, 22). Our results for MopR show that protein concentration is a critical parameter for oligomerization but that ATP might also assist in stabilizing the oligomeric state, as the lag phase was observed to be a function of ATP concentration. Moreover, it was also observed that oligomerization was possible even in the absence of phenol, thus indicating that it is not a prerequisite for this process.

To understand whether AAA¹ proteins have some commonality in their mechanisms of ATPase activity and mode of oligomerization, phylogenetic classification of the AAA¹ members was performed as proposed by Aravind and coworkers by exploiting the unique topological feature present in each family to differentiate between clades (Fig. 6) (8, 25). The AAA¹ proteins were classified into seven clades based on the insertions in the secondary structural elements at defined places either within or adjacent to the core AAA¹ fold (Fig. 6). Structural and functional analysis revealed that these insertions play a vital role in oligomerization and/or function. For instance, the clamp loader clade, which has no additional insertions, has always been reported to form stable pentamers (8, 26), whereas the initiator clade members (which include proteins such as DnaA, Orc1, etc.) harbor an insertion in their α2 that is believed to prevent them from forming closed oligomeric rings and instead promotes assembly as helical wraps (27, 28). In contrast, it appears that insertion of a β-hairpin structure at two locations, one right before the sensor I region (presensor I) and the other at the location of α2 (H2), does not disrupt the closed assembly but rather promotes functional interactions (Fig. 6). The crystal structure of the AAA¹ domain of the PspF protein from the NtrC family (H2 insert clade) shows that these insertions protrude out of the central pore and likely participate in interaction with both the DNA and partner proteins (29). Further, the high-resolution cryo-EM structure of the AAA¹ PspF protein in complex with a DNA σ54-RNA polymerase complex confirms that indeed H2 acts as a tweezer that juts out of the central pore and clasps σ54 (29). A mutation in this H2 insertion eliminates the downstream σ54-RNA polymerase-mediated transcription activity, highlighting that proper placement of these loops is paramount for function (12). In the HCLR clade, the presensor I hairpin has also been shown to be necessary for interacting with the DNA (30). In the case of the clade superfamily III, the helicase interacts with its partner protein (31) via these appendages, and the downstream function has been shown to be hampered by disrupting these interactions. A study of dynein, a member of the PSII insert clade, which has both the presensor I and H2 insertion and is evolutionarily most similar to the NtrC clade, also shows that alteration in these central pore insertions can have impairing effects on the interdomain interaction...
and ATP hydrolysis (32). Thus, we believe an adequately assembled closed state AAA+ structure is a prerequisite for the proper orientation of these β-hairpins. Moreover, another important common feature observed in these clades is that proteins that possess these β-hairpin insertions also exhibit concentration-dependent oligomerization and assembly transitions via an intermediate state. For instance, LonA from the HCLR clade has been shown to transition from a dimer to a hexamer via a tetrameric intermediate (33). Similarly, ClpA has also been shown to form a hexamer via a tetrameric intermediate (34). We report a similar scenario in the case of MopR where the assembly progresses from a dimeric to a hexameric form via a tetrameric intermediate in a protein concentration-dependent manner. The recently solved structure of DmpR, which is a close homolog of MopR, is consistent with our biochemical observations. DmpR was solved in the phenol-bound state as a tetramer where the organization is head to tail with the signal reception domain being in closer proximity to the adjacent AAA+ unit (23). In this state, however, the β-hairpin insertions extend out and are unlikely to interact with the σ54-RNA polymerase and DNA. We, therefore, believe that the
The tetrameric state is an intermediate state and not a functionally active form. Based on the AAA\(+\) superfamily literature as well as the structures and biochemical studies performed on other NtrC family proteins, we believe that the formation of the central pore, such that the \(\beta\)-hairpin insertions extend out of the pore grasping the key interacting elements, is a prerequisite for effecting the mechano-function of the enzyme. The biochemical data for the MopR system highlights that the hexameric assembly is the optimal oligomerization state for function.

The ATP binding sites in AAA\(+\) proteins are generally at the dimeric interface where ATP is stabilized between the protomers via the conserved sensor I, sensor II, Walker A, and Walker B motifs along with the arginine finger motifs (7). NtrC family proteins also contain all these elements, and while the other conserved elements all reside on one protomer the arginine finger in these proteins always resides in the adjacent subunit (7). Sequential, probabilistic, and concerted models have been proposed to account for allosteric regulation of ATPase activity in various systems (35). For NtrC proteins, due to their modular architecture where the AAA\(+\) domain is sandwiched between the upstream signal reception domains and a downstream DNA binding domain, multiple layers of controls on AAA\(+\) activation status exist, thereby further complicating the development of a reliable allosteric model (36). In NtrC family proteins, the role of the signal reception domain has been better studied, and it has been documented that the signal reception domain can exhibit a varied effect that differs from protein to protein (12). For instance, in some members such as NtrC1, the signal reception domain has been shown to negatively regulate ATPase activity (17), whereas in the parent NtrC protein, the regulation is positive (18), i.e., no ATP hydrolysis/oligomerization is observed in the absence of the signal reception domain. However, an intermediate scenario (19) is observed in the case of NtrC4 where there is some basal activity, in the absence of the sensor molecule/modification, which is stimulated several fold upon ligand activation. MopR resembles the NtrC4 system where the presence of the signal reception domain results in negative regulation that is released upon addition of phenol.

Here, based on the kinetic data obtained in this study, we propose a basic model of allosteric regulation (Fig. 7) in which the enzyme undergoes protein concentration-dependent oligomerization from dimer to hexamer via a tetrameric intermediate. This hexameric assembly subsequently shuttles between a tense (T) state that has a lower affinity for ATP and a relaxed (R) state with a higher affinity for ATP. The equilibrium between the two states is further regulated by phenol concentration. Our experiments show that phenol stabilizes the T state and thus prompts ATP hydrolysis. However, at higher phenol concentrations due to the predominance of the T state, cooperativity decreases. This model describes the overall effect of phenol on the entire AAA\(+\) hexameric unit and implies that the internal
rearrangement of the individual protomers in the AAA+ assembly may have a direct bearing on the phenol sensing domain conformation.

In summary, we have been able to identify several key elements in the allosteric regulation of MopR. In particular, we have shown that MopR exists in an equilibrium between different oligomeric states and undergoes a concentration-dependent transition from a lower oligomeric state to a higher oligomeric state. Additionally, this study shows that the protein’s signal reception domain affects the oligomerization profile of the protein, since we observed a dimer-hexamer equilibrium in the case of MopRA+C but a monomer-hexamer equilibrium in the case of MopRC. The oligomerization appears to take place via a tetrameric intermediate in the case of MopRA+C and a pentameric one in the case of MopRC. Furthermore, we have also demonstrated the significance of phenol in derepressing the protein that becomes more primed for subsequent transcription activation. The knowledge obtained here may contribute to understanding the functioning of other NtrC superfamily members.

MATERIALS AND METHODS

Molecular biology and protein expression. The MopRAC (that encodes residues 1 to 500) and MopRC (that encodes residues 205 to 500) genes were cloned from genomic DNA of Acinetobacter calcoaceticus NCIB8250 into a modified pET28a expression vector (Fig. 1b and c) (20). The Walker A (K279A) and Walker B (E345A) point mutants were generated by site-directed mutagenesis protocol using the Phusion DNA polymerase from New England Biolabs. The products obtained were confirmed on 0.8% agarose gel. The products were then digested with DpnI for 2 h at 37°C and transformed into E.coli DH5α cells. The single colonies obtained were processed for plasmid isolation. All the mutations in the obtained clones were confirmed by DNA sequencing. Escherichia coli BL2(DE3) pLysS cells transformed with these constructs were grown at 37°C until an OD600 of 0.6 to 0.8 was reached and protein expression was then induced by adding 0.7 mM IPTG (isopropyl-β-D-thiogalactopyranoside). The cells were then grown at 16°C for 16 h and harvested by centrifugation at 4000 rpm for 20 min. Both MopRA+C and MopRC (Fig. 1b and c) proteins were expressed as C-terminal His-tag fusion proteins.

Protein purification. The harvested cells were resuspended in lysis buffer (50 mM HEPES buffer [pH 7.5] containing 2 mM imidazole and 200 mM NaCl), lysed, and centrifuged. The supernatant was applied to a His-Trap HP column (GE Healthcare). The column was then washed with 50 mM HEPES buffer (pH 7.5) containing 2 mM imidazole and 200 mM NaCl, lysed, and centrifuged. The supernatant obtained was processed for plasmid isolation. All the mutations in the obtained clones were confirmed by DNA sequencing. Escherichia coli BL2(DE3) pLysS cells transformed with these constructs were grown at 37°C until an OD600 of 0.6 to 0.8 was reached and protein expression was then induced by adding 0.7 mM IPTG (isopropyl-β-D-thiogalactopyranoside). The cells were then grown at 16°C for 16 h and harvested by centrifugation at 4000 rpm for 20 min. Both MopRA+C and MopRC (Fig. 1b and c) proteins were expressed as C-terminal His-tag fusion proteins.

ATPase assays. The ATPase activities of MopRA+C and MopRC were determined by monitoring the change in fluorescence intensity as a function of time of MDCC [7-diethylamino-3-[[2-maleimidyl(ethyl)amino(carbonyl)coumarin]-labeled PBP (phosphate-binding protein). PBP was expressed, purified, and labeled as described before (37). ATP hydrolysis reactions were initiated by mixing equal volumes of MopRA+C or MopRC and 16 μM PBP-MDCC with known concentrations of ATP. In the case of measurements in the presence of phenol, fixed concentrations of phenol were incubated with protein samples for 10 min prior to mixing with ATP. The reaction progress was monitored by exciting at 430 nm and measuring the fluorescence emission at 475 nm using a Fluorolog-3 fluorimeter (Horiba Jobin Yvon, Edison, NJ). All the reactions were carried out at 25°C in 25 mM HEPES buffer (pH 7.5) containing 100 mM NaCl, 10 mM MgCl2, and 0.5 mM DTT.

Data analysis. The rate of ATP hydrolysis was determined using a calibration curve for MDCC-PBP with known concentrations of phosphate. All data fitting was carried out in Origin 2019b. The effect of protein concentration on the ATPase activity was determined in order to ascertain whether the protein is in equilibrium between different oligomeric states. We assumed that the active hexameric form of the protein, E_6, is in equilibrium with an inactive monomeric or dimeric form with an equilibrium constant:

$$K = [E_6] / [E_1]^m$$

where $m = 6$ for $N = 1$ and $m = 3$ for $N = 2$. The maximum initial rate of ATP hydrolysis (V_{max}) at saturating substrate (ATP) concentration, is given by

$$V_{max} = k_{cat}[E_6]$$

where k_{cat} is the catalytic rate constant of E_6. Combining equations (1) and (2) yields

$$V_{max} = k_{cat}K[E_1]^m$$

The total enzyme monomer concentration ([E1]) is

$$[E_1] = 6[E_6] + N[E_0]$$
Combining equations (2)-(4) leads to the following equation for fitting the data:

\[[k_i] = \alpha V_{\text{max}}^n + \beta V_{\text{max}}^{1/m} \quad (5) \]

where \(m = 6 \) for \(N = 1 \) or \(m = 3 \) for \(N = 2 \), \(\alpha = 6/k_{\text{cat}}^{\text{a}} \) and \(\beta = N/1/k_{\text{cat}}^{\text{a}} \). The data in Fig. 2 were fitted to equation (5) for \(m = 6 \) or \(m = 3 \).

(i) Analysis of cooperativity. Plots of initial rates of ATP hydrolysis as a function of ATP concentration were used for analysis of cooperativity. The data (Fig. 3a, b and Fig. 5a) were fitted to the Hill equation (38),

\[V = \frac{K[S]^n}{1 + K[S]^n} \quad (6) \]

where \(V \) is the initial velocity, \([S] \) is the ATP concentration, \(K \) is the apparent binding constant and \(n \) is the Hill coefficient.

(ii) Assembly kinetics. A lag phase is observed when ATP hydrolysis by MopR is monitored by measuring the change in fluorescence intensity of PBP-MDCC as a function of time. The lag phase can be an indication of nucleation-dependent polymerization (39, 40). Such measurements were carried out with various concentrations of protein at a fixed, saturating concentration of ATP. It has been proposed that the length of the lag phase scales inversely to \([\text{monomer}]^M/2 \) where \(M \) is the number of monomers involved in the critical step for initial assembly. Plots of In(lag time) versus In([monomer]) (Fig. 4) were generated to obtain the value of \(M \).

Size exclusion chromatography coupled to multi-angle light scattering (SEC-MALS) study. SEC—MALS was performed at different concentrations of native MopR \(^{1-35} \) and its Walker B mutant (E345A) in the presence of ATP. The samples were loaded on a Superose 6 10/300 analytical gel filtration column (GE Healthcare) running at 0.4 mL/min, connected to an Agilent HPLC system in tandem with the 18-angle light scattering detector (Wyatt Dawn HELIOS II) and a refractive index detector (Wyatt Optilab TrEX). Prior to the experiment, the system was equilibrated with the ATPase assay buffer and subsequent calibration was carried out with BSA at a concentration of 2 mg/mL; the molecular weights were calculated using Astra software (Wyatt Technologies).

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.

SUPPLEMENTAL FILE 1

PDF file, 0.5 MB.

ACKNOWLEDGMENTS

The work of J.S. at the Weizmann Institute of Science was supported by an EMBO short-term fellowship (STF number: 8301). R.A. acknowledges support of DST, Government of India (Project No. DST/TMD/EWO/WTI/2K19/EWFH/2019/48). J.S. thanks Ilia Korobko for his helpful advice. The authors also thank Radha Chauhan for providing access to SEC-MALS facility at National Centre for Cell Science, Pune, India.

REFERENCES

